SCHEME OF TEACHING

M.Tech (VLSI Design and Embedded Systems)

I Semester

S.	Course	Course Title	Catagony		Credits			Contact
No	Code	Course Thie	Category	L	Т	Р	Total	Hours
1.	MVE11	Advanced Engineering Mathematics	PS-C	2	1	0	3	4
2.	MVE12	Digital System Design using HDL	PS-C	3	0	0	3	3
3.	MVEExx	Elective 1	PS-E	4	0	0	4	4
4.	MVEExx	Elective 2	PS-E	4	0	0	4	4
5.	MVEExx	Elective 3	PS-E	3	0	0	3	3
6.	RM116	Research Methodology and IPR		3	0	0	3	3
7.	MVEL13	Digital System Design Laboratory	PS-C	0	0	1	1	2
8.	MVEL14	Advanced Embedded Systems Laboratory	PS-C	0	0	1	1	2
	Total					2	22	25

II Semester

S.	Course	Course Title	Catagony	Credits				Contact
No	Code	Course Title	Category	L	Т	P	Total	Hours
1.	MVE21	Analog and Mixed Signal IC Design	PS-C	3	1	0	4	4
2.	MVE22	ARM System Design	PS-C	4	0	0	4	4
3.	MVEExx	Elective 4	PS-E	4	0	0	4	4
4.	MVEExx	Elective 5	PS-E	4	0	0	4	4
5.	MVEExx	Elective 6	PS-E	4	0	0	4	4
6.	MVEL23	Analog and Mixed Signal IC Design Laboratory	PS-C	0	0	1	1	2
7.	MVEL24	Advanced Microcontroller Laboratory	PS-C	0	0	1	1	2
	Total			19	1	2	22	24

III Semester

S.	Course	Correct Title	Catagory		(Credi	its	Contact
No	Code	Course Thie	Category	L	Т	Р	Total	Hours
1.	MVE31	SoC Design	PS-C	3	1	0	4	4
2.	MVEExx	Elective 7	PS-E	4	0	0	4	4
3.	MVE32	Internship/Industrial Training	IN	0	0	4	4	8
4.	MVE33	Project Work – I	PW	0	0	4	4	8
Total			7	1	8	16	24	

IV Semester

S.	Course	Course Title	Catagony		(Credi	its	Contact
No	Code	Course Thie	Category	L	Т	Р	Total	Hours
1.	MVE41	Project Work – II	PW	0	0	20	20	40
Total			0	0	20	20	40	

List of Electives

S.	Course	Course Name		Credits				
No	Code			Т	Р	Total		
1.	MVEE01	Advanced Embedded Systems	4	0	0	4		
2.	MVEE02	VLSI Circuits and System	4	0	0	4		
3.	MVEE03	Digital VLSI Testing		0	0	3		
4.	MVEE04	Advanced Digital Logic Verification	4	0	0	4		
5.	MVEE05	Embedded Linux	4	0	0	4		
6.	MVEE06	Machine Learning and Deep Learning	4	0	0	4		
7.	MVEE07	Internet of Things (IoT)	4	0	0	4		
8.	MVEE08	Physics of Semiconductor Devices	4	0	0	4		
9.	MVEE09	ASIC Design	4	0	0	4		
10.	MVEE10	Physical VLSI Design	4	0	0	4		

ADVANCED ENGINEERING MATHEMATICS				
Course Code: MVE11		Credits: 2:1:0		
Pre-requisites: Engineering Mathema	atics	Contact Hours: 28L+14T		
Course Coordinator: M. Girinath Re	eddv			
	 Uni	t – I		
Linear Algebra I: Geometry of lin	ear equati	ons, Solution sets of linear systems, Gaussian		
elimination method, Gauss Seidel met	hod, Matri	x notation, inverses, Partitioned matrices, Matrix		
Tactorization and determinants.	Challe	and talls		
 Pedagogy/Course delivery tools: Links: 				
	Unit	z – II		
Linear Algebra II: Linear transformat the origin, Dilation, Contraction and Ro rank, basis and dimension, linear transf	ions, Com eflection, V ormation, o	position of matrix transformations, Rotation about /ector spaces and subspaces, linear independence, change of basis.		
Pedagogy/Course delivery tools:	> Chalk	and talk		
• Links:	\triangleright			
	Unit	- III		
Graph Theory: Introduction, Isomorp	hism, Con	nected Graphs, Disconnected Graphs, Trees, Cut-		
Pedagogy/Course delivery tools:	\succ Chalk	and talk		
 Links: 				
	Unit	- IV		
 complementary function, inverse opera Legendre's linear equations, linear de constant coefficients Pedagogy/Course delivery tools: 	ator, rules pendence ≻ Chalk	for finding the particular integral, Cauchy's and of solutions, simultaneous linear equations with and talk		
• Links:	/ Unit	× V 7		
Unit – V Partial Differential Equations: Introduction, formation of partial differential equations, solutions of partial differential equations, homogeneous linear equations with constant coefficients, working procedure to solve homogeneous linear equations, rules for finding complementary function, non-homogeneous linear equation. • Pedagogy/Course delivery tools: > Chalk and talk • Links: >				
Reference Books:				
 Gareth Williams, "Linear Algebra with Applications", 6th Edition, Jones and Barlett Publishers, 2011 David C Lay, "Linear Algebra and its Applications", 3rd Edition, Pearson Education, 2013 Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science", PHI Learning, 2011 M. P. Deisenroth, A. A. Faisal, C. S. Ong, "Mathematics for Machine Learning", 1st Edition, Cambridge University Press, 2020. S. B.S. Grewal, "Higher Engineering Mathematics", 44th Edition, Khanna Publication, 2018 				
Course Outcomes (COs):				
At the end of the course, students will b	be able to:			

- 1. Solve linear equations using Gauss elimination and Gauss Seidel methods (POs: 1, 3)
- 2. Verify if the given set forms a basis of a vector space and change the bases in the vector space (POs: 1, 3)
- 3. Use graph theoretic idea for electrical network analysis (POs: 1, 3)
- 4. Use analytical methods to solve higher order ordinary differential equations and simultaneous differential equations a raising in many practical applications (POs: 1, 3)
- 5. Learnt to form and solve PDE's for homogeneous and non-homogenous and linear equations (POs: 1, 3)

Continuous Internal Evaluation: 50 Marks					
Assessment Tool	Marks	Course outcomes addressed			
Internal test-I	30	CO1, CO2, CO3			
Internal test-II	30	CO3, CO4, CO5			
Average of the two internal tests shall be taken for 30 marks.					
Other components	Marks	Course outcomes addressed			
Other components Quiz	Marks 10	Course outcomes addressed CO1, CO2, CO3			
Other components Quiz Assignment	Marks 10 10	Course outcomes addressedCO1, CO2, CO3CO3, CO4, CO5			
Other components Quiz Assignment	Marks 10 10	Course outcomes addressedCO1, CO2, CO3CO3, CO4, CO5			

DIGITAL SYSTEM DESIGN USING HDL					
Course Code: MVE12		Credits: 3:0:0			
Pre-requisites:		Contact Hours: 42L			
Course Coordinator: Dr. Rajendra F	Prasad P				
	Uni	t – I			
Introduction and Methodology: Digit	tal systems	and embedded systems, Binary representation and			
circuit elements, Real world circuits, M	Iodels, Des	ign methodology			
Number Basics: Unsigned and signed	Integers, Fi	and floating point numbers			
 Pedagogy/Course delivery tools: Linker 	Chaik	and talk			
 Links: Links: 	https:https://www.second.com/	//nptel.ac.in/courses/117105040			
- Links.	Unit	- II			
Sequential Basics: Storage elements	, Counters,	Sequential data paths and control, Clocked			
synchronous timing methodology					
• Pedagogy/Course delivery tools:	> Chalk	and talk			
• Links:	https://	/nptel.ac.in/courses/11/106092 /nptel.ac.in/courses/117106086			
• Links:	≠ nups./				
	Unit	- 111			
Memories and Implementation Fa	brics: Co	ncepts, Memory types, Error detection and			
correction, ICs, PLDs, Packaging and c	circuit boar	ds, Interconnection and signal integrity			
 Pedagogy/Course delivery tools: 	Chalk	and talk			
• Links:	https:/	/nptel.ac.in/courses/117106109			
• Links:	> https:/	/nptel.ac.in/courses/11/106114			
	Unit	– IV			
System Verilog Simulation and Synth	hesis: Syste	em Verilog extension to Verilog, RTL and gate			
level modeling, RTL synthesis, Subse	t of Systen	n Verilog, System Verilog simulation, Digital			
synthesis, Modules, Procedural blocks	-				
 Pedagogy/Course delivery tools: 	Chalk	and talk			
• Links:	https:/	/nptel.ac.in/courses/108103179			
• Links:	➤ https:/	/nptel.ac.in/courses/106105165			
	Unit	- V			
RTL Modeling Fundamentals: Syst	tem Verilo	g language rules – Module, Module instances,			
Hierarchy, Four state data values, Data	types, Varia	able types, Net types, Operators, Continuous signal			
assignments, Procedural signal assignm	nents, Mode	eling combinational logic and sequential logic			
• Pedagogy/Course delivery tools:	> Chalk	and talk			
• Links:	https://	/nptel.ac.in/courses/106105165			
• Links:	► https:/	/ipter.ac.iii/courses/108105179			
Reference Books:	Reference Books:				
1. Peter J. Ashenden, "Digital I	Design: An	Embedded Systems Approach using Verilog",			
Elsevier, 2010.	1				
2. Stuart Sutherland, "KIL Mode. System Varilag for ASIC on	Ing with Sy	Vision verified for Simulation and Synthesis: Using			
Publishing Platform 2017	u frua l	besign, ist Edition, Create Space independent			
3. Samir Palnitkar. "Verilog HD	L: A Guide	e to Digital Design and Synthesis". 2nd Edition.			
Pearson Education, 2010.					

4. Chris Spear, Greogory J Tumbush, "System Verilog for Verification – A Guide to Learning Test Bench Language Features", Springer, 2012.

Course Outcomes (COs):

At the end of the course, students will be able to:

- 1. Apply the concepts of Verilog modeling to design and verify the operations of complex digital logic circuits. (POs: 1, 3, 4)
- 2. 2. Design, model and test pipelined storage elements, sequential data path controllers based on signed, unsigned fixed point and floating point number systems with Verilog. (POs:.1,3,4)
- 3. 3. Employ Verilog modeling to multi-port memories, FIFO data paths and FSMs with respect to integrated circuits. (POs: 1, 3, 4)
- 4. 4. Illustrate the basics of System Verilog to simulate and synthesize digital systems. (POs: 1, 3, 4)
- 5. Design and model combinational and sequential circuits using System Verilog. (POs: 1, 3, 4)

Continuous Internal Evaluation: 50 Marks					
Assessment Tool	Marks	Course outcomes addressed			
Internal test-I	30	CO1, CO2, CO3			
Internal test-II	30	CO3, CO4, CO5			
Average of the two internal tests shall be taken for 30 marks.					
Other components	Marks	Course outcomes addressed			
Quiz	10	CO1, CO2, CO3			
Assignment	10	CO3, CO4, CO5			
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5			

DIGITAL SYSTEM DESIGN LABORATORY						
Cour	Course Code: MVEL13 Credits: 0:0					
Pre-1	requisites: Digital Electronics	Contact Hours: 14P				
Cour	rse Coordinator: Dr. Rajendra Prasad P					
	List of Experiments					
Using	Using Verilog code design, simulate and synthesize the following with a suitable FPGA					
1.	8 to 3 programmable priority encoder					
2.	. Full Adder using structural modeling					
3.	3. Flip Flops(D,SR,T,JK)					
4.	4. 4-bit arbitrary counter,4-bit binary up/down/up-down counter with synchronous reset, 4-bit Johnson counter, BCD counter					
5.	Sequential block to detect a sequence (say 11101) using	appropriate FSM				
6.	8-bit ripple carry adder and carry skip adder					
7.	8-bit carry select adder					
8.	Stepper motor and DC motor interface					
9.	DAC interface					
Using	g System Verilog code, simulate the following					
10.	Full subtractor using structural modeling					
11.	11. Flip Flops(D,SR,T,JK)					
12.	4-bit synchronous/asynchronous counters, synchronous a	arbitrary counter				

References:

1. Peter J. Ashenden, "Digital Design: An Embedded Systems Approach using Verilog", Elsevier, 2010.

2. Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", 2nd Edition, Pearson Education, 2010.

3. Stuart Sutherland, "RTL Modeling with System Verilog for Simulation and Synthesis: using System Verilog for ASIC and FPGA Design", 1st Edition, Create Space Independent Publishing Platform, 2017.

Web links and Video Lectures (e-Resources):

- 1. https://nptel.ac.in/courses/108105113
- 2. https://nptel.ac.in/courses/117103064
- 3. https://nptel.ac.in/courses/117106086
- 4. https://nptel.ac.in/courses/117106114
- 5. https://nptel.ac.in/courses/106105165
- 6. https://nptel.ac.in/courses/108103179

- 1. Design and model complex combinational circuits using HDL at behavioral, structural and RTL levels. (POs: 1, 3, 4, 5)
- 2. Enumerate complex sequential circuits using HDL at behavioral, structural and RTL levels. (POs: 1, 3, 4, 5)
- 3. Develop test benches to simulate combinational and sequential circuits. (POs: 1, 3, 4, 5)
- 4. Illustrate how the language infers hardware and helps to simulate and synthesize the digital system. (POs: 1, 3, 4, 5)
- 5. Implement and analyze the digital systems using FPGAs with respect to speed and area. (POs: 1, 3, 4, 5)

Continuous Internal Evaluation: 50 Marks						
Assessment Tool	Marks	Course outcomes addressed				
Weekly evaluation of laboratory manuals/records after the conduction of every experiment	30	CO1, CO2, CO3, CO4, CO5				
Practical test	20	CO1, CO2, CO3, CO4, CO5				
Semester End Examination:	50	CO1, CO2, CO3, CO4, CO5				

ADVANCED EMBEDDED SYSTEMS LABORATORY							
Cour	rse Code: MVEL14	Credits: 0:0:1					
Pre-1	Pre-requisites: Contact Hours:						
Cour	Course Coordinator: Dr. Suma K V						
	List of Experiments						
РСВ	Designing						
1.	Generation of schematic, Bill of Materials and Net list						
2.	Generation of layout						
3.	Gerber file Generation and Online viewer						
Unifi	ed Modeling Language (UML)						
4.	Model the static aspects of the system using Use Case Diagram in UML						
5.	Model the static aspects of the system using Basic Class Diagram and generate code in UML Optimized Class Diagram and generate code in UML						
6.	Model the elevator system using sequence diagram in U	JML					
RTO	S programs						
7.	Create a process using fork () function call						
8.	Demonstrate the functionality of a 'Signal' when a delet	e key is pressed					
9.	Multithreading – One thread reads the input from the keyboard and another thread converts to upper case. This is done until 'Stop' is pressed. Number of threads can be running sharing same CPU.						
10.	Intertask communication using following techniques- • semaphore • pipes • FIFO • Message queue						

References:

- 1. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, First Edition, Reprint 2014.
- 2. James K Peckol, "Embedded Systems A Contemporary Design Tool", John Wiley, 2nd Edition 2008.

Web links and Video Lectures (e-Resources):

Course Outcomes

- 1. Generate the schematic, netlist, bill of materials and layout for a given circuit (POs- 2, 3)
- 2. Generate Gerber files for actual PCB fabrication (POs 2, 3, 4).
- 3. Generate UML static diagrams for a given embedded application (POs 1, 2, 3, 4, 5)
- 4. Generate UML dynamic diagrams for a given embedded application (POs 1, 2, 3, 4, 5)
- 5. Implement the basic concepts of RTOS such as threads, processes, semaphore & mutex (POs 2,3,4)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Weekly evaluation of laboratory manuals/records after the conduction of every experiment	30	CO1, CO2, CO3, CO4, CO5		
Practical test	20	CO1, CO2, CO3, CO4, CO5		
Semester End Examination:	50	CO1, CO2, CO3, CO4, CO5		

ANALOG AND MIXED SIGNAL IC DESIGN			
Course Code: MVE21		Credits: 3:1:0	
Pre-requisites:		Contact Hours: 42L+14T	
Course Coordinator: Dr. V. Anandi			
	Unit – I		
Single Stage Amplifier: CS stage with	th resistance loa	d, diode connected load, Current source load,	
active load, triode load, CS stage wit	h source degen	eration, Source follower, Common-gatestage,	
Cascode stage, Folded cascode.	2		
• Pedagogy/Course delivery tools:	Chalk and	talk	
• Links:	https://npt	el.ac.in/courses/117101105	
• Links:	https://arcl	nive.nptel.ac.in/courses/108106105/	
• Links:	https://npt	el.ac.in/courses/117106030	
• Links:	https://a.in	npartus.com/ilc/#/course/1307788/1112	
	Unit – I	[
Frequency Response of CS stage	e: General cor	siderations Miller effect Association of	
poles with nodes Frequency response	nse of commor	source stage.	
Differential Amplifiers and Cur	rent Mirrors	Basic differential pair Common mode	
response differential pair with N	AOS loads G	bertcell Basic current mirror Cascode	
current mirror	100 10003, 01	iberteen, Busie eurient million, euseode	
Pedagogy/Course delivery tools:	> Chalk and	talk	
• Links:	 bttps://ppt 	al ac in/courses/117101105	
• Links.	 https://npt https://arcl 	nive nptel ac in/courses/108106105/	
• Links.	 https://arei https://npt 	eLac.in/courses/117106030	
• Links:	 https://a.in 	npartus.com/ilc/#/course/1307788/1112	
Unit – III			
Operational Amplifiers: One-stage	e opamp, Two-	stage opamp, Gain boosting, output swing	
calculations, common-mode feedback	k, input range, li	mitations, slew rate, PSRR, Noise in opamp.	
Stability and Frequency Compen	sation: General	considerations, multi-pole systems, phase	
margin, basic frequency compensatio	n. compensation	of two-stage opamp.	
Pedagogy/Course delivery tools:	\succ Chalk and	talk	
• Links.	https://npt	el ac in/courses/117101105	
• Links:	 https://arcl 	nive.nptel.ac.in/courses/108106105/	
• Links:	> https://npt	el.ac.in/courses/117106030	
• Links:	➢ https://a.in	npartus.com/ilc/#/course/1307788/1112	
	Unit – IV	7	
Bandgan Deferences and Switch	ad Constitut	Circuitor Conoral considerations supply	
ballugap References and Switch	demondent bies	DTAT support a considerations, supply	
more pendent brashing, reinperature independent brashing, PTAT current generation, Constant Gm			
biasing, sampling switches, switched	capacitor ampli	ners.	
• Pedagogy/Course delivery tools:	\succ Chalk and	talk	
• Links:	https://npt	el.ac.in/courses/117101105	
• Links:	▶ https://arcl	nive.nptel.ac.in/courses/108106105/	
• Links:	https://npt	e1.ac.1n/courses/11/100030	
• Links:	nups://a.in	1507/88/1112	
Unit – V			

Data Converter Architecture: DAC and ADC specifications, Qualitative analysis of resistor string DAC, R-2R Ladder networks, current steering DAC, Cyclic DAC, Pipeline DAC, Flash ADC, Pipeline ADC, IntegratingADC

٠	Pedagogy/Course delivery tools:	٨	Chalk and talk
٠	Links:	\triangleright	https://a.impartus.com/ilc/#/course/1307788/1112

Reference Books:

- 1. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", 2nd Edition, Tata McGraw-Hill, 2018.
- 2. Phillip E Allen, Douglas R Holberg, "CMOS Analog Circuit Design", 2nd Edition Oxford University Press, 2013.
- 3. R.JacobBaker, "CMOS Circuit Design, Layout, Simulation", 2nd Edition, Wiley publications, 2005.
- 4. B.Razavi, "Microelectronics", 1st Edition Tata Mc GrawHill, 2001.

Course Outcomes (COs):

At the end of the course, students will be able to:

- 1. Relate the concept of MOS devices to various MOS amplifier applications.(POs:1,3,4)
- 2. Apply the concept of differential amplifiers with MOS loads to estimate the frequency response of one stage opamp. (POs:1,3,4)
- 3. Apply the concept to amplifiers to construct one, two stage op-amp and analyze the frequency compensation, stability of an op-amp. (POs: 1,3,4)
- 4. Illustrate the concept of bandgap references and switched capacitor circuits. (POs:1,3,4)
- 5. Analyze different types of ADCs and DACs (POs:1,3,4)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Internal test-I	30	CO1, CO2, CO3		
Internal test-II	30	CO3, CO4, CO5		
Average of the two internal tests shall be taken for 30 marks.				
Other components	Marks	Course outcomes addressed		
Quiz	10	CO1, CO2, CO3		
Assignment	10	CO3, CO4, CO5		
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5		

ARM SYSTEM DESIGN			
Course Code: MVE22		Credits: 4:0:0	
Pre-requisites: Microcontrollers/ En	Contact Hours:56L		
Course Coordinator: Dr. Suma K V			
	Unit – I		
Introduction to ARM Cortex M Pro	ocessors: What are ARM Co	ortex M Processors, advantages of	
the Cortex M Processors, applications	s of the ARM Cortex M proc	essors	
Technical overview : General infor behavior of the application program s control block, Debug	mation, Architecture – int tatus word, memory system,	roduction, programmer's model, exceptions and interrupts, system	
• Pedagogy/Course delivery tools:	Power point presentation	on, Chalk and talk	
• Links:	https://nptel.ac.in/cours	es/106105193	
	Unit – II		
Instruction set: Moving data withir operations, shift and rotate instructio and test, program flow control, satur related instructions, memory barrier in	n the processor, memory ac ns, data conversion operation ration operations, exception instructions.	ccess, arithmetic operations, logic ons, bit field processing, compare -related instructions, sleep mode-	
• Pedagogy/Course delivery tools:	Power point presentati	on, Chalk and talk	
• Links:	https://developer.arm.c	com/documentation/ddi0439/b	
	Unit – III		
system control register, entering slee &WFE instructions in programming, s delay, WIC, event communication in programming.	p mode, wake-up condition sleep-on-exit feature, SEVO terface, low power features	is, low power features using WFI NPEND, sleep extension/wake-up using WFI &WFE instructions in	
 Pedagogy/Course delivery tools: Links: 	 Power point presentati https://developer.arm.c 	on, Chaik and talk om/ip-products/processors	
	/cortex-m /	······································	
	Unit – IV		
Cortex M4 floating point unit: Over fault address registers, CPACR registers, CPACR, media and floating point fe	view, floating point register ster, floating point register ature registers	overview, fault status registers and bank, FPSCR, FPCCR, FPCAR,	
Pedagogy/Course delivery tools:	Power point presentation	on, Chalk and talk	
• Links:	➤ https://www.arm.com/t	technologies/floating-point	
	Unit – V		
Fault exceptions & fault handling: Causes of faults, enabling fault handlers, fault status registers and fault address registers, analyzing faults.			
 Pedagogy/Course delivery tools: Links: 	 Power point presentation https://developer.arm.cc cortex-m0-instruction- 	on, Chalk and talk om/documentation/dui0497/a/the- set	
Reference Books:			
 Joseph Yiu, "The Definitive Guide to the ARM Cortex-M4", 3rd Edition, Newnes (Elsevier) Publications, 2014. Shibu K. V, "Introduction to Embedded Systems", 2nd Edition, Tata McGraw Hill Education Private Ltd. 2000 			
Course Outcomes (COs):			
At the end of the course, students will be able to: 1. Familiarize with the technical overview and architecture of ARM Cortex M4 (POs: 3)			

- 2. Apply the technical knowledge of ARM Cortex M4 to build programs (POs: 1, 3, 4)
- 3. Illustrate the importance of low power mode features of ARM Cortex M4 (POs: 1, 3, 4)
- 4. Understand the floating point features of ARM Cortex M4 (POs: 1, 3, 4)
- Identify the causes of failures in ARM Cortex M4 using fault exception mechanism (POs: 1, 4)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Internal test-I	30	CO1, CO2, CO3		
Internal test-II	30	CO3, CO4, CO5		
Average of the two internal tests shall be taken for 30 marks.				
Other components	Marks	Course outcomes addressed		
Quiz	10	CO1, CO2, CO3		
Assignment	10	CO3, CO4, CO5		
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5		

ANALOG AND MIXED SIGNAL IC DESIGN LABORATORY			
Cour	rse Code: MVEL23	Credits: 0:0:1	
Pre-1	requisites:	Contact Hours: 14P	
Cour	rse Coordinator: Dr. V. Anandi		
	List of Experiments		
1.	Design the CMOS Inverter circuit for the given specific mentioned below: a) Draw the schematic and verify the for Transient Analysis	ations and complete the design flow ollowing: DC Analysis, AC Analysis,	
2.	Design the Common Source Amplifier circuit for the given specifications and complete the design flow mentioned below: a) Draw the schematic and verify the following: DC Analysis, AC Analysis		
3.	Design of Common Source Amplifier for transient analy	vsis	
4.	Design the Common Drain Amplifier the for given specifications and complete the design flow mentioned below: a) Draw the schematic and verify the following: DC Analysis, AC Analysis, Transient Analysis		
5.	 Design the Common Gate Amplifier the for given specifications and complete the design flow mentioned below: a) Draw the schematic and verify the following: DC Analysis, AC Analysis, Transient Analysis 		
6.	Design the differential Amplifier the for given specifications and complete the design flow: i) Draw the schematic and verify the following: DC Analysis, AC Analysis,		
7.	Design of differential Amplifier for Transient Analysis i) calculate Bandwidth and CMRR		
8.	Design a single-stage op-amp for given specifications and complete the design flow mentioned below: a) Draw the schematic and verify the following: DC Analysis, AC Analysis		
9.	Design of single-stage op-amp for Transient Analysis b) calculation of Bandwidth		
10.	Design a two-stage op-amp with given specifications and complete the design flow mentioned below: a) Draw the schematic and verify the following: DC Analysis, AC Analysis, Transient Analysis b) calculate Bandwidth		
11.	Simulate the functionality of two input AND gate usin Analog Inverter using AMS simulator.	g digital two input NAND gate and	
12.	Design a 4-bit R-2R DAC with the given and complet Draw the schematic and verify the following: DC Analys	e the design flow mentioned below: sis, AC Analysis	

References

- Behzad Razavi, "Design of Analog CMOS Integrated Circuits", 2nd Edition Tata McGraw-Hill, 2018
- 2. Phillip E Allen, Douglas R Holberg, "CMOS Analog Circuit Design", Oxford University Press,2004.

Web links and Video Lectures (e-Resources):

1. http://vlabs.iitkgp.ernet.in/vlabs/vlab2/

Course Outcomes:

At the end of the course, the student will be able to

1. Design and analyze the operation of current mirrors and single-stage amplifiers. (POs: 1, 3, 4,

5)

- 2. Analyse the frequency response of the different configurations of an amplifier. (POs: 1, 3, 4, 5)
- 3. Design and analyse frequency response characteristics of Differential Amplifier, OP-AMP. (POs: 1, 3, 4, 5)
- 4. Ability to understand stability compensation for amplifiers. (POs: 1, 3, 4, 5)
- 5. Demonstrate proficiency in using VLSI CAD tools for design and analysis of mixed-signal circuits. (POs: 1, 3, 4, 5)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Weekly evaluation of laboratory manuals/records after the conduction of every experiment	30	CO1, CO2, CO3, CO4, CO5		
CIE test	20	CO1, CO2, CO3, CO4, CO5		
Semester End Examination:	50	CO1, CO2, CO3, CO4, CO5		

ADVANCED MICROCONTROLLER LABORATORY			
Cour	rse Code: MVEL24	Credits: 0:0:1	
Pre-	requisites:	Contact Hours: 14P	
Cour	rse Coordinator:		
	List of Experiments		
Asse	mbly Language Coding:		
1.	Programs involving Data Transfer Instructions		
2.	Programs involving Arithmetic instructions		
3.	Programs involving logical instructions		
4.	Programs for Sorting and Finding largest element in an array		
5.	Programs for Code conversion between BCD, ASCII & Hexadecimal		
6.	Program for finding Factorial of a number		
7.	Programs using low power modes		
8.	Programs using interrupts		
Perij	Peripheral interfacing using ARM Cortex M4:		
9.	Display (LCD & LED) modules		
10.	Generation of Sine & Square waveforms using Dual DAC		
11.	Elevator		
12.	Calculator-type keyboard		
13.	Relay output		
14.	Stepper Motor		

References:

1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M4", 3rd Edition, Newnes (Elsevier) Publication, 2014.

Web links and Video Lectures (e-Resources):

Course Outcomes:

- 1. Employ simulation and emulation IDE for implementation (POs: 4, 5)
- 2. Write, compile and debug assembly language and C programs for ARM Cortex M4 (POs: 1, 3, 5)
- 3. Write C language programs to interface display modules and data converters to ARM Cortex M4 (POs: 1, 4, 5)
- 4. Write C language programs to control DC motor, stepper motor and relay through ARM Cortex M4 (POs: 1, 4, 5)

5. Write C language programs to interface keyboard, RTC and temperature sensor modules to ARM Cortex M4 (POs: 1, 4, 5)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Weekly evaluation of laboratory manuals/records	30	CO1, CO2, CO3, CO4, CO5		
after the conduction of every experiment				
CIE test	20	CO1, CO2, CO3, CO4, CO5		
Semester End Examination:	50	CO1, CO2, CO3, CO4, CO5		

SoC DESIGN			
Course Code: MVE31		Credits: 3:1:0	
Pre-requisites:		Contact Hours: 42L+14T	
Course Coordinator: Dr. V. Anandi			
	Uni	t – I	
 Evaluation of SOC: Evaluation of s. Design, Comparison between System-Design, Review of Moore's law. Introd Components of the System: processor programmability, versus performance, p. network - on - chip approach, an approach, an approach. Pedagogy/Course delivery tools: 	ilicon process Tec- on-Board, System uction to the system rs, memories, and in processor architect ach for SoC design > Chalk and tal	chnology, The Evolution of Design Methodology, SOC n-on-Chip, and System-in-Package, Motivation for SOC sms approach: system architecture: an overview, interconnects, hardware and software: ures, system - level interconnection, bus – based approach, n k	
• Links:	https://www.a to-soc	arm.com/resources/education/onlinecourses/introduction-	
	Uni	t – II	
 Chip Basics: Time, Area, Power, Reliability, and Configurability. introduction, design trade –offs, five big issues in system - on - chip (SoC) design, cycle time, the pipelined processor, defining a cycle, optimum pipeline, performance, die area and cost, processor area, ideal and practical scaling, power, area – time – power trade - offs in processor design, workstation processor, embedded processor. Pedagogy/Course delivery tools: Chalk and talk 			
	to-soc		
	Unit	- III	
Processors: processor selection for So architecture, basic concepts in processo Robust processors: vector, very long	C: overview, exam r microarchitectur instruction word (ples: processor core selection, basic concepts in processor re, buffers: minimizing pipeline delays, VLIW), and superscalar, vector processors	
Pedagogy/Course delivery tools:Links:	 Chalk and tal https://www.a to-soc 	k arm.com/resources/education/onlinecourses/introduction-	
	Unit	- IV	
 Memory Design: System - on – chip and board - based systems, introduction, SoC external memory: flash, SoC internal memory: placement, the size of memory, scratchpads and cache memory, basic notions, cache organization, multilevel caches, SoC (on - die) memory systems, board - based (off - die) memory systems, simple dram and the memory array, SDRAM and DDR SDRAM Pedagogy/Course delivery tools: Links: Chalk and talk https://www.arm.com/resources/education/onlinecourses/introduction-to-soc 			
Unit – V			
Interconnect: Introduction, overview: interconnect architectures, what is an NOC? bus: basic architecture, arbitration and protocols, bus bridge, physical bus structure, bus varieties, SoC standard buses, AMBA, core connect, bus interface units: bus sockets and bus wrappers, analytic bus models, contention and shared bus, Beyond the bus: NOC with switch interconnects, soc interconnect switches, static networks, dynamic networks, NOC layered architecture, bus versus NOC, static versus dynamic networks.			
Pedagogy/Course delivery tools:Links:	 Chalk and tal https://www.a to-soc 	k arm.com/resources/education/onlinecourses/introduction-	

Reference Books:

- 1. R.E. Michael J.Flynn, Wayne Luk, "Computer system Design: Systemon-Chip", Wiley-India, 2012.
- 2. Sudeep Pasricha, Nikil Dutt, "On Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers, 2008.
- 3. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on-chip. Springer, 2006.
- 4. Wayne Wolf, "Modern VLSI Design: IP Based Design", Prentice-Hall India, Fourth edition, 2009.

Course Outcomes (COs):

At the end of the course, students will be able to:

- 1. Identify the applications of SOC in today electronics industry. (PO-1, 3,4)
- 2. Identify the building blocks of commercially available system on board, system on chip, and system in package. (PO-1, 3,4)
- 3. Provide the overview of embedded processors with different architectures (PO-1, 3,4)
- 4. Understand the concepts behind embedded memories with scratchpad and cache. (PO-1, 3,4)
- 5. Describe the AMBA, NOC architectures and iidentify the usage in real time. (PO-1, 3,4)

Continuous Internal Evaluation: 50 Marks				
Assessment Tool	Marks	Course outcomes addressed		
Internal test-I	30	CO1, CO2, CO3		
Internal test-II	30	CO3, CO4, CO5		
Average of the two internal tests shall be taken for 30 marks.				
Other components	Marks	Course outcomes addressed		
Quiz	10	CO1, CO2, CO3		
Assignment	10	CO3, CO4, CO5		
Semester End Examination:	100	C01, C02, C03, C04, C05		

ADVANCED EMBEDDED SYSTEMS		
Course Code: MVEE01	Credits: 4:0:0	
Pre-requisites:	Contact Hours: 56 L	
Course Coordinator: Dr. Suma K V		
	Unit – I	
Typical Embedded System: Core of	the Embedded System, Memory, Sensors and Actuators,	
Embedded Firmware, Other System Embedded Systems	Components. Characteristics and Quality Attributes of	
Pedagogy/Course delivery tools:Links:	 Chalk and talk, Powerpoint presentation https://nptel.ac.in/courses/106105193 	
	Unit – II	
the waterfall model, the V cycle model, the spiral model and rapid prototyping incremental, problem solving – five steps to design, the design process, identifying the requirements, formulating the requirements specifications, the system design specification, system specifications vs system requirements. Hardware Software Co-Design and Program Modeling: Fundamental Issues in Hardware		
Software Co-Design, Computational Mic	Chells and tally Deviant presentation	
 Pedagogy/Course delivery tools: Linko: 	 Chalk and talk, Powerpoint presentation https://pntel.ac.in/courses/106105182 	
 Links: Links: 	 https://nptet.ac.in/courses/100105182 https://archive.nptel.ac.in/courses/106/105/106105182/ 	
	Unit – III	
Embedded Hardware Design and Development : EDA Tools, How to Use EDA Tool, Schematic Design – Place wire, Bus, port, junction, creating part numbers, Design Rules check, Bill of materials, Net list creation, PCB Layout Design – Building blocks, Component placement, PCB track routing.		
Approaches, Embedded Firmware D	evelopment Languages	
 Pedagogy/Course delivery tools: Links: Links: 	 Chalk and talk, Powerpoint presentation https://www.electronicsforu.com/buyers-guides/eda- tools-circuit-design https://www.synopsys.com/glossary/what-is-electronic- design-automation.html 	
Unit – IV		
Software modeling : Introduction to UML, UML Diagrams, use cases, class diagrams, dynamic modeling with UML, Interaction diagrams, Sequence diagrams, Fork and Join, Branch and merge, Activity diagram, State chart diagrams, dynamic modeling with structural design methods.		
Pedagogy/Course delivery tools:	> Chalk and talk, Powerpoint presentation	
• Links:	http://www.digimat.in/nptel/courses/video/106105153/ L 51 html	
• Links:	https://nptel.ac.in/courses/106101235	
Unit – V		
Real-Time Operating System (RTOS) based Embedded System Design : Operating System Basics, Types of OS, Tasks, Process and Threads, Multiprocessing and Multitasking, Threads,		

Processes and Scheduling: Putting them altogether, Task Communication, Device Drivers, How to			
Choose an RTOS.			
 Pedagogy/Course d 	Pedagogy/Course delivery tools: > Chalk and talk, Powerpoint presentation		
• Links:	https://elearn.nptel.ac.in/shop/nptel/real-time-		
• Links:	operating-system/		
	https://www.digimat.in/nptel/courses/video/106105172		
	/L13.html		
Defenence Deelver			
Kelerence books:			
1. Shibu K V, "I	ntroduction to Embedded Systems", Tata McGraw Hill Education Private		
Limited, First e	edition, reprint 2014.		
2. James K Pecke	ol, "Embedded Systems – A Contemporary Design Tool", John Wiley, 2 nd		
Edition 2008.	Edition 2008.		
3. David A Patterson, John L Hennessy "Computer Organization and Design- ARM Edition",			
4 th Edition, Morgan Kauffman Publishers Elsevier, 2010.			
Course Outcomes (COs):			
At the end of the course	e, students will be able to:		
1. Identify the bas	1. Identify the basic building blocks, characteristics and quality attributes of embedded systems		
(POs - 1, 4).	(POs - 1, 4).		
2 Analyze the co	2 Analyze the complete life cycle of embedded system design and development ($PO_s = 1/2$		
$\frac{2.4 \text{ mary ze the co}}{4.5}$	2. A mary ze the complete file cycle of embedded system design and development ($10s - 1, 2, 4, 5$)		
-7, 5).	2 Design a printed aircuit board for a given aircuit by using the DCD design IDE (DOg 1.2)		
J. Design a printe	5. Design a printed circuit board for a given circuit by using the PCB design IDE (POS $-1, 2, 4, 5$)		
4, 3).	4, J).		
4. Interpret the va	interpret the various computational models of software in embedded system design (POs –		

- 1, 2, 4).
- 5. Select the RTOS for real time embedded system design (POs 1, 2, 4, 5).

Continuous Internal Evaluation: 50 Marks		
Assessment Tool	Marks	Course outcomes addressed
Internal test-I	30	CO1, CO2, CO3
Internal test-II	30	CO3, CO4, CO5
Average of the two internal tests shall be taken for 30 marks.		
Other components	Marks	Course outcomes addressed
Quiz	10	CO1, CO2, CO3
Assignment	10	CO3, CO4, CO5
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5

VLSI CIRCUITS AND SYSTEMS		
Course Code: MVEE02	Credits: 4:0:0	
Pre-requisites: Digital Design	Contact Hours: 56 L	
Course Coordinator: Dr. V. Anandi		
	Unit – I	
MOS Transistor Theory: n MOS/p M Device design equation, sub-thresho Tunneling, Punch through, hot electransmission gate	MOS transistor, threshold voltage equation, body effect, MOS old region, Channel length modulation. mobility variation, ctron effect, CMOS inverter, $\beta n / \beta p$ ratio, noise margin,	
 Pedagogy/Course delivery tools: 	➤ Chalk and talk	
• Links:	https://nptel.ac.in/courses/106106089	
• Links:	https://nptel.ac.in/courses/117101004	
• Links:	https://vlsi-iitg.vlabs.ac.in/	
• Links:	http://vlabs.iitkgp.ac.in/tcad/exp8/	
	Unit – II	
Circuit Characterization and Perfo	rmance Estimation: Delay Estimation – transient response,	
RC delay model, Elmore delay model, Combinational Circuit Design: Stati	Linear delay model, Sizing with the method of logical effort c CMOS, Ratioed circuits, CVSL, Pass transistor circuits	
• Pedagogy/Course delivery tools:	Chalk and talk	
• Links:	https://nptel.ac.in/courses/106106089	
• Links:	https://nptel.ac.in/courses/117101004	
	Unit – III	
Data Path Sub System Design: Intr Adders – Brent Kung, Kogge Stone, M	roduction, Addition – Carry lookahead, Carry Select, Tree Iultiplication: Carry-Save format, Booth Algorithm	
• Pedagogy/Course delivery tools:	Chalk and talk	
• Links:	https://nptel.ac.in/courses/106106089	
Links:	https://nptel.ac.in/courses/117101004	
	Unit – IV	
Dynamic CMOS and Clocking: Dynamic Clocking- clock generation.	ynamic CMOS Circuits, Domino CMOS structure, Charge	
Pedagogy/Course delivery tools:	Chalk and talk	
• Links:	https://nptel.ac.in/courses/106106089	
• Links:	https://nptel.ac.in/courses/117101004	
Unit – V Timing Issues in Digital Circuits: Timing classification of digital systems, Synchronous design – Timing basics, Skew and Jitter, Clock distribution, Latch based techniques.		
• Pedagogy/Course delivery tools:	Chalk and talk	
• Links:	https://nptel.ac.in/courses/106106089	
• Links:	https://nptel.ac.in/courses/117101004	
Reference Books:		
 Erwin Kreyszig –Advanced Engineering Mathematics – Wiley publication – 10th edition-2015. B. S. Grewal –Higher Engineering Mathematics – Khanna Publishers – 44th edition – 2017. Neil H E Weste, David Harris, "CMOS VLSI Design: A System Perspective", 4th Edition, Pearson Education, 2014. Jan Rabaey, B. Nikolic, A. Chadrakasan," Digital Integrated Circuits: A Design Perspective", 2nd Edition, Pearson,2016 Wayne Wolf, "Modern VLSI Design: System on Silicon", 3rd Edition, PHI, 2008. Douglas A Pucknell Kamran Eshraghian "Basic VI SI Design" 3rd Edition, PHI 2009 		

At the end of the course, students will be able to:

- 1. Analyse the theory behind CMOS digital integrated circuits. (POs:1, 3, 4)
- 2. Employ different performance metrics to predict the performance of VLSI circuits. (POs:1, 3, 4)
- 3. Apply digital design concepts to demonstrate different data path functions. (POs: 1, 3, 4)
- 4. Design and analyze dynamic CMOS circuits. (POs: 1, 3, 4)
- 5. Predict variations in clock signals, and design circuits to reduce the effects of variation. networks. (POs: 1, 3, 4, 5)

Continuous Internal Evaluation: 50 Marks		
Assessment Tool	Marks	Course outcomes addressed
Internal test-I	30	CO1, CO2, CO3
Internal test-II	30	CO3, CO4, CO5
Average of the two internal tests shall be taken for 30 marks.		
Other components	Marks	Course outcomes addressed
Quiz	10	CO1, CO2, CO3
Assignment	10	CO3, CO4, CO5
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5

DIGITAL VLSI TESTING			
Course Code: MVEE03		Credits: 3:0:0	
Pre-requisites: CMOS VLSI Design		Contact Hours: 42L	
Course Coordinator: Dr. Deepali Kop	pad		
	Unit – I		
Introduction: Role of testing, Testing of	during the VLSI li	fe cycle, Challenges in VLSI testing, test	
economics, Yield, Fault coverage	Single Stuck at fa	ult fault aquivalance fault collansing	
• Pedagogy/Course delivery tools:	\succ Chalk and ta	lk	
 Links: 	 https://nptel. 	ac.in/courses/117105137	
• Links:	\succ https://drive.	google.com/file/d/1n6agUcye7HE1xPItw	
	Q03wow0b3	g6NloU/view	
	Unit – II		
Logic and Fault Simulation: Simulation	n Models, Algorit	hms for true value simulation, Algorithms	
Testability Measures: Controllability a	nd Observability.	n. SCOAP Testability analysis	
 Pedagogy/Course delivery tools: 	\succ Chalk and ta	lk	
• Links:	➤ https://nptel.	ac.in/courses/117105137	
• Links:	➤ https://drive.	google.com/file/d/1n6agUcye7HE1xPItw	
	Q03wow0b3	g6NloU/view	
	Unit – III		
Combinational Circuit Test Generation Algorithm, PODEM, FAN.	on: ATPG Algebra	s, Combinational ATPG Algorithms – D-	
• Pedagogy/Course delivery tools:	\succ Chalk and ta	lk	
 Links: 	 https://nptel. 	ac.in/courses/117105137	
• Links:	https://drive.google.com/file/d/1n6agUcye7HE1xPItw		
Q03wow0b3g6NloU/view			
	Unit – IV		
Sequential Circuit Test Generation: T	Time frame expans	sion method, Simulation-based sequential	
Logic BIST: Test pattern generation, ou	utput response ana	lyzer, BIST architectures, Fault coverage	
Pedagogy/Course delivery tools:	Chalk and ta	lk	
 Links: 	> https://nptel.	ac.in/courses/117105137	
• Links:	➤ https://drive.	google.com/file/d/1n6agUcye7HE1xPItw	
	Q03wow0b3	g6NloU/view	
Unit – V			
Boundary Scan : Introduction and motiv Memory Test: Notation, Faults – Fault March Test Notation, Fault Modeling – I	vation, TAP contro Manifestations, F Diagnosis Versus	oller and port, SOC test problems. ailure Mechanisms, Memory Test Levels, Festing Needs, Reduced Functional Faults	
Pedagogy/Course delivery tools:	➤ Chalk and talk		
• Links:	https://nptel.ac.in/courses/117105137		
• Links:	O03wow0b3g6NloU/view		
Reference Books:		-	

- 1. Laung-Terng Wang, Cheng-Wen Wu and Xiaoqing Wen, (Eds.), "VLSI Test Principles and Architectures: Design for Testability", Morgan Kaufmann Publishers, 2006.
- 2. Michael L. Bushnell, Vishwani D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2002.
- 3. Zainalabedin Navabi, "Digital System Test and Testable Design", Springer New York, NY, 2011
- 4. Parag K. Lala, "Digital Circuit Testing and Testability", Academic Press, 1997

At the end of the course, students will be able to:

- 1. Create and manipulate fault models of VLSI circuits. (POs 1, 3, 4)
- 2. Perform fault simulations, and predict testability measures of digital circuits. (POs 1, 3, 4)
- Generate optimized test patterns for combinational and sequential logic circuits. (POs 1, 3, 4)
- 4. Design scan chains and BIST modules for digital designs. (POs -1, 3, 4)
- 5. Employ boundary scan elements in design. (POs -1, 3, 4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	CO1, CO2, CO3	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	C01, C02, C03	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

ADVANCED DIGITAL LOGIC VERIFICATION		
Course Code: MVEE04	Credits: 4:0:0	
Pre-requisites:	Contact Hours: 56 L	
Course Coordinator:		
	Unit – I	
Verification Concepts: Concepts of Verification, Test bench generation, Func Stimulus generation, Direct testing, Cov plan	verification, Importance of verification, Stimulus vs ctional verification approaches, Typical verification flow, verage: Code coverage and functional coverage, Coverage	
Pedagogy/Course delivery tools:Links:	 Chalk and talk 	
	Unit – II	
System Verilog – Language Constructs: Data types: Two state data, Strings, Arrays: Queues, Dynamic and associative arrays, Structs, Enumerated types. Program blocks, modules, interfaces, Clocking ports, Mod ports ● Pedagogy/Course delivery tools: > Chalk and talk		
• Links:	<u> </u>	
	Unit – III	
System Verilog – Classes and Randor objects, Class variables and methods Polymorphism, Randomization: Directed randomization	mization: SV classes, Language evolution, Classes and c, Class instantiation, Inheritance and encapsulation, l vs Random testing, Randomization: Constraint driven	
 Pedagogy/Course delivery tools: Links: 	> Chalk and talk	
Links.	Unit – IV	
System Verilog – Assertions and Coverage: Assertions-Introduction to assertion based verification, Immediate and concurrent assertions, Coverage driven assertion: Motivation, types of coverage, Cover group, Cover point, Cross coverage, Concepts of binning and event sampling • Pedagogy/Course delivery tools: > Chalk and talk		
• Links:		
Building Test Bench: Layered test bench architecture, Introduction to Universal Verification Methodology (UVM), Overview of UVM, Base classes and simulation phases in UVM and UVM macros, Unified messaging in UVM, UVM environment structure, Connecting DUTvirtual interface • Pedagogy/Course delivery tools: > Chalk and talk • Links: >		
Reference Books:		
 Chris Spear, Greogory J Tumbush Test Bench Language Features", S SasanIman, "Step by Step Function Brown Publishing, 2008. Stuart Sutherland, Simon Davidm to using System Verilog for Ha Publications, 2006. Janick Bergeron, "Writing Test Edition 2000 	n, "System Verilog for Verification – A Guide to Learning Springer, 2012. onal Verification with System Verilog and OVM", Hansen nann, Peter Flake, "System Verilog for Design – A Guide ardware Design and Modeling", 2nd Edition, Springer Benches using System Verilog", Springer International	

At the end of the course, students will be able to:

- 1. Discuss the principle and importance of verification. (POs: 1, 3, 4)
- 2. Apply OOPs concepts in System Verilog to verify a digital system. (POs: 1, 3, 4)
- 3. Develop basic verification environment using System Verilog. (POs: 1, 3, 4)
- 4. Create random stimulus and track functional coverage using System Verilog. (POs: 1, 3, 4)
- 5. Illustrate the concepts of layered test bench architecture and its components. (POs: 1, 3, 4)

Continuous Internal Evaluation: 50 Marks		
Assessment Tool	Marks	Course outcomes addressed
Internal test-I	30	CO1, CO2, CO3
Internal test-II	30	CO3, CO4, CO5
Average of the two internal tests shall be taken for 30 marks.		
Other components	Marks	Course outcomes addressed
Quiz	10	CO1, CO2, CO3
Assignment	10	CO3, CO4, CO5
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5

EMBEDDED LINUX SYSTEM DEVELOPMENT			
Course Code: MVEE05		Credits: 4:0:0	
Pre-requisites: NIL		Contact Hours: 56 L	
Course Coordinator: Dr. Lakshmi Shrinivasan			
Unit – I			
Introduction: History of Embedded I	inux Why F	Embedded Linux Embedded Linux Versus	
Desktop Linux. Frequently Asked Oue	stions. Embed	ded Linux Distributions. Porting Roadmap.	
Getting Started: Architecture of Embe	dded Linux, L	inux Kernel Architecture, User Space, Linux	
Start-Up Sequence, GNU Cross Platform	n Tool chain		
 Pedagogy/Course delivery tools: 	Chalk and	d talk, power point presentations	
• Links:	https://bu	sybox.net/live_bbox/live_bbox.html	
• Links:	http://vla	bs.iitkgp.ernet.in/rtes/index.html	
	Unit – II		
Board Support Package: Inserting B Management, the PCI Subsystem, Timer	SP in Kernel	Build Procedure, Memory Map, Interrupt Power Management	
Pedagogy/Course delivery tools:	Chalk and	d talk, power point presentations	
• Links:	https://bu	sybox.net/live_bbox/live_bbox.html	
• Links:	http://vla	bs.iitkgp.ernet.in/rtes/index.html	
	Unit – III		
Embedded Storage: Flash Map, MTD– MTD Driver for NOR Flash, The Flash-I utils Package, Embedded File Systems, 0	—Memory Tec Mapping Drive Optimizing Sto	hnology Device, MTD Architecture, Sample rs, MTD Block and Character Devices, MTD rage Space, Tuning Kernel Memory.	
 Pedagogy/Course delivery tools: 	Chalk and	d talk, power point presentations	
• Links:	https://bu	sybox.net/live_bbox/live_bbox.html	
Links:	http://vla	bs.iitkgp.ernet.in/rtes/index.html	
	Unit – IV		
Embedded Drivers: Linux Serial Drive Watchdog Timer and Kernel Modules.	r, Ethernet Dri	ver, I2C Subsystem on Linux, USB Gadgets,	
 Pedagogy/Course delivery tools: 	Chalk and	d talk, power point presentations	
• Links:	https://bu	sybox.net/live_bbox/live_bbox.html	
• Links:	http://vla	bs.11tkgp.ernet.1n/rtes/1ndex.html	
	Unit – V		
Porting Applications: Architectural Comparison, Application Porting Roadmap, Programming with Pthreads, Operating System Porting Layer (OSPL), Kernel API Driver			
 Pedagogy/Course delivery tools: 	Chalk and	d talk, power point presentations	
• Links:	https://bu	sybox.net/live_bbox/live_bbox.html	
• Links:	> http://via	bs.iitkgp.ernet.in/rtes/index.ntml	
Reference Books:			
1. P.Raghvan, Amol Lad and Sriram Neelakandan, "Embedded Linux System Design And			
Development", 1st Edition, Aue	rbach Publicati	ions, September 2019.	
2. Karim Yaghmour, Jon Maste	rs, Gilad Ber	n-Yossef, and Philippe Gerum, "Building	
Embedded Linux Systems", 2nd	Embedded Linux Systems", 2nd edition, O'Reilly publications, 2008.		
Course Outcomes (COs):			
At the end of the course, students will be	e able to:		

- 1. Understand the embedded Linux development environment. (POs 1)
- 2. Appraise the need of BSP in an embedded system. (POs 1, 3)
- 3. Select appropriate Linux model for embedded storage devices. (POs 1, 3, 4)
- 4. Appreciate various embedded Linux drivers. (POs 1, 3)
- 5. Acquire the knowledge of porting applications to embedded Linux from a traditional RTOS. (POs 1, 3, 4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	CO1, CO2, CO3	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	C01, C02, C03	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

MACHINE LEARNING AND DEEP LEARNING		
Course Code: MVEE06		Credits: 4:0:0
Pre-requisites:		Contact Hours: 56 L
Course Coordinator: Dr. K. Indira		
	U	nit – I
Introduction: What is machine learning Supervised Learning: Learning a class Learning multiple classes, Regression, M Bayesian Decision Theory: Classification Rules	g, Exam ss fron Aodel se ion, Lo	ple machine learning applications n examples, VC dimension, PAC learning, Noise, election and generalization sses and Risks, Discriminant functions, Association
Pedagogy/Course delivery tools:Links:	$\succ C$ $\succ ht$	nalk and talk tps://onlinecourses.nptel.ac.in/noc22_cs29/preview
	U	nit – II
 Parametric Methods: Maximum likelihood estimation, Evaluating an estimator, Bayes estimator, Parametric classification, Regression, Tuning model capacity Dimensionality Reduction: Subset Selection, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) Pedagogy/Course delivery tools: Chalk and talk 		
	Ur	nit – III
Unsupervised Learning: Clustering: k- Decision Trees: Univariate Trees: Class • Pedagogy/Course delivery tools: • Links:	-Means ificatio > Cl > ht	Clustering, EM algorithm, Hierarchical Clustering, n and Regression trees halk and talk tps://onlinecourses.nptel.ac.in/noc22_cs29/preview
	Ur	nit – IV
 Multilayer Perceptrons: Perceptron, Tr perceptrons, Backpropagation algorithm. Pedagogy/Course delivery tools: Links: Links: 	aining ; , Traini ▶ Cl ▶ ht ▶ ht	a perceptron, Learning Boolean functions, Multilayer ng procedures, Dimensionality reduction nalk and talk tps://nptel.ac.in/courses/117105084 tps://nptel.ac.in/courses/108108148
	U	nit – V
Deep Neural Networks: Deep feed forward networks, regularization for deep learning, Optimization for training deep models, Convolutional networks • Pedagogy/Course delivery tools: ➤ Chalk and talk		
• Links:	▶ ht	tps://nptel.ac.in/courses/11/105084
Reference Books:		
 Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, PHI Learning Pvt. Ltd, 2015 Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017. Christopher Bishop, "Pattern Recognition and Machine Learning", CBS Publishers &Distributors, 2010. Tom Mitchell, "Machine Learning", McGraw Hill, 1997. Michael Nielsen, "Neural Networks and Deep Learning", 2019. 		

At the end of the course, students will be able to:

- 1. Examine the concepts of various supervised learning algorithms and employ Bayesian learning for classification (POs 1, 3, 4)
- 2. Evaluate parametric methods for classification and investigate various dimensionality reduction algorithms (POs -1, 3, 4)
- 3. Analyse unsupervised learning algorithms and multivariate concepts (POs -1, 3, 4)
- 4. Appreciate the concepts of deep learning and apply deep feed forward network practical problems (POs 1,3, 4)
- 5. Understand Deep Neural Networks and demonstrate how Convolutional Network can be mapped to practical applications (POs 1, 3, 4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	CO1, CO2, CO3	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	CO1, CO2, CO3	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

INTERNET OF THINGS (IoT)			
Course Code: MVEE07	Credits: 4:0:0		
Pre-requisites:	Contact Hours: 56L		
Course Coordinator: Dr. Suma K V			
	Unit – I		
Introduction & Concepts : Definition and Characteristics of IoT, Things in IoT, IoT Protocols, IoT Functional Blocks, IoT Communication Models, IoT Communication APIs, IoT Enabling Technologies, IoT levels and deployment templates. IoT and M2M, SDN and NFV for IoT			
Pedagogy/Course delivery tools:Links:	 Chalk and talk 		
	Unit – II		
Developing Internet of Things: IoT P Process, Domain, Information, Service Development	Platform design methodology, Specifications: Requirements, es, Level, Functional, Operational, Integration, Application		
Pedagogy/Course delivery tools:Links:	 Chalk and talk 		
	Unit – III		
on Raspberry Pi, Raspberry Pi Interfaces: Serial, SPI, I2C Programming Raspberry Pi with Python: Controlling LED, Interfacing Switch, Interfacing Light Sensor			
 Links: 			
Unit – IV Web Application Framework: Django, Web Services for IoT, SkyNet Messaging Platform, Data Analytics for IoT: Apache: Hadoop, Oozie, Storm, Real-Time Data Analysis, Tools for IoT • Pedagogy/Course delivery tools: > Chalk and talk			
• Links:			
	Unit – V		
IoT Case Studies: Home Automation: Smart Lighting, Home Intrusion Detection; Cities: Smart Parking Environment: Weather Monitoring System, Weather Reporting Bot, Air Pollution Monitoring, Forest Fire Detection; Agriculture – Smart Irrigation, IoT Printer. • Pedagogy/Course delivery tools: > Chalk and talk			
Reference Books:			
 Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A Hands-on Approach", University Press, 2015. Pethuru Raj, Anupama C Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases Description", Taylor & Francis, CRC Press, 2017. 			
Course Outcomes (COs):			
 At the end of the course, students will be able to: 1. Describe the OSI Model for the IoT/M2M Systems. (POs-1,3) 2. Learn basics of design, integration and applications of IoT models. (POs-1,3) 3. Acquire the knowledge of basic blocks of an IOT devices using Raspberry Pi. (POs-3) 			

- 4. Understand cloud storage models and web services for IoT. (POs-3)
- **5.** Appraise with various case studies. (POs-1,3,4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	CO1, CO2, CO3	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	C01, C02, C03	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

PHYSICS OF SEMICONDUCTOR DEVICES		
Course Code: MVEE08		Credits: 4:0:0
Pre-requisites:		Contact Hours:56L
Course Coordinator: Dr. Raghuram	S	
	Unit	t – I
Energy Bands and Charge Carriers	in Semicon	ductors: Bonding forces in solids, Energy bands,
Metals, Semiconductors, Insulators, El hole concentrations in equilibrium	ectrons and	Holes, Effective mass, Fermi Level, Electron and
Pedagogy/Course delivery tools:	➤ Chalk	and talk
• Links:	\succ	
	Unit	- II
Conductivity and Mobility: Effects	of temperat	ure and doping on mobility, Hall effect, Carrier
lifetime, Direct and indirect recombin	nation, Diff	usion and drift of carriers, Continuity equation,
Steady state carrier injection	C 111-	1 4-11-
• Pedagogy/Course delivery tools:		and talk
• Links:	/ Unit	m
PN Junctions: Contact potential Fern	ui levels and	- III
Time variation of stored charge Can	acitance of	PN junctions Schottky barriers Rectifying and
ohmic contacts, Heterojunctions	uentunee or	in genericity senserily currents, recentlying and
Pedagogy/Course delivery tools:	➤ Chalk	and talk
• Links:	\succ	
	Unit	- IV
Bipolar Junction Transistors: Fundation	amental ope	eration, Amplification, Terminal currents, Cutoff
and saturation, Secondary effects,	Gummel H	Poon model, Capacitance and charging time,
Heterojunction bipolar transistors		1 11
• Pedagogy/Course delivery tools:	\succ Chalk	and talk
• Links:	/ Unit	V
MOS Canacitor and Threshold Vo	UIII Itage: MO9	- v SEET: Output and transfer characteristics Short
channel I-V model, Control of threshol Equivalent circuit Secondary effects	ld voltage, S	Substrate bias effect, Subthreshold characteristics, MOSEET structures
 Pedagogy/Course delivery tools: 	Chalk	and talk
• Links:	\triangleright	
References:		
1. Ben Streetman, Sanjav Banne	rjee, "Solid	State Electronic Devices", 7th Edition, Prentice
Hall India, 2014.	J ²	,,,
2 Robert F Dierret "Semiconductor Device Fundamentals" 2nd Edition Addison Wesley		
2. Robert F Tierret, Semiconductor Device Fundamentals, 2nd Edition, Addison wesley, 1996.		
3. Robert F Pierret, "Advanced 1992.	Semicondu	ctor Fundamentals", 2nd Edition, Prentice Hall,
Course Outcomes (COs):		
At the end of the course students will	be able to:	
1 Estimate carrier concentration	in semicon	fuctors given the type and doning level of
impurities. (POs: 3, 4)		
2 Predict drift and diffusion carrier concentration in semiconductors (POs: 3.4)		
3 Compute the current through a PN junction under forward and reverse biased conditions		
(POs: 3, 4)	juneno	., and i for that and to to be blased conditions.

- 4. Apply basic and advanced electronic concepts to derive models for current flow in a BJT transistor. (POs: 3, 4)
- 5. Employ electronic concepts to predict qualitative and quantitative operating conditions of MOS transistors. (POs: 3, 4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	CO1, CO2, CO3	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	CO1, CO2, CO3	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

ASIC DESIGN			
Course Code: MVEE09	Credits: 4:0:0		
Pre-requisites:	Contact Hours:56L		
Course Coordinator: Dr. V. Anandi			
	Unit – I		
Introduction to ASICs: Full custom, Se	emi-custom and programmable ASICs, ASIC design flow,		
ASIC cell libraries CMOS Logic: Data Carry bypass, Carry save, Carry select, operators, I/O cells	apath logic cells: Data path elements, Adders: Carry skip, Conditional sum, Multiplier (Booth encoding), Data path		
 Pedagogy/Course delivery tools: Links: 			
	/ Unit – II		
ASIC Library Design: Logical effort: P	redicting delay. Logical area and logical efficiency. Logical		
paths. Multi stage cells. Optimum delay a	and number of stages		
paulis, main suge cens, optimum actuy (
Programmable ASIC Logic Cells: MU2	X as Boolean function generators, Actel ACT: ACT 1, ACT		
2 and ACT3 logic modules, Xilinx LCA:	XC3000 CLB, Altera FLEX and MAX		
Pedagogy/Course delivery tools:	Chalk and talk		
• Links:	\triangleright		
	Unit – III		
 Programmable ASIC I/O Cells: Xilinx and Altera I/O Block Low-level Design Entry: Schematic entry: Hierarchical design, Netlist screener ASIC Construction: Physical Design, CAD Tools Partitioning: Goals and objectives, Constructive partitioning, Iterative partitioning improvement, 			
Pedagogy/Course delivery tools:	Chalk and talk		
 Links: 			
Linko.	Unit – IV		
 Floor Planning: Goals and objectives, Floor planning tools, Channel definition, I/O and Power planning, Clock planning Placement: Goals and objectives, Min-cut placement algorithm, Iterative placement improvement, Physical design flow. 			
Pedagogy/Course delivery tools:	Chalk and talk		
• Links:	A		
	Unit – V		
Routing: Global routing: Goals and objectives, Global routing methods, Back-annotation			
Detailed Routing: Goals and objectives, Measurement of channel density, Left-Edge and Area routing algorithms. Special routing, Circuit extraction and DRC			
Pedagogy/Course delivery tools:Links:	 Chalk and talk 		
References:			
 M J S Smith, "Application Speci Jose E France, Yannis Tsivio Telecommunication and Signal F Malcolm R Haskard , Lan C Ma Hall, 1998. 	fic Integrated Circuits", Pearson Education, 2003. dis, "Design of Analog – Digital VLSI Circuits for Processing", Prentice Hall, 1994. ay, "Analog VLSI Design – NMOS and CMOS", Prentice		

4.	. Vikram Arkalgud Chandrasetty, "VLSI Design: A Practical Guide for FPGA and ASIC		
	Implementations", Springer, 2011.		
5.	Rakesh Chadha, J. Bhasker, "An ASIC Low Power Primer: Analysis, Techniques and		
	Specification", Springer Publications, 2015.		
Course	e Outcomes (COs):		
At the	end of the course, students will be able to:		
1.	Describe the concepts of ASIC design methodology, data path elements and FPGA		
	architectures. (POs: 4)		
2.	Design data path elements for ASIC cell libraries and compute optimum path delay. (POs:		
	4)		
3.	Employ industry synthesis tools to achieve desired objectives. (POs: 1, 2, 3, 5)		
4.	Design of FPGAs and ASICs suitable for specific tasks, perform design entry and explain		
	physical design flow. (POs: 1, 3, 4)		
5.	Create floor plan including partition and routing using CAD algorithms. (POs: 4)		

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	C01, C02, C03	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	C01, C02, C03	
Assignment	10	CO3, CO4, CO5	
	•		
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	

PHYSICAL VLSI DESIGN			
Course Code: MVEE10	Credits: 4:0:0		
Pre-requisites:	Contact Hours:56L		
Course Coordinator: Dr. Raghuram S	5		
	Unit – I		
Netlist Partition Algorithms: Introduce complexity, Graph theory terminology, I	uction to electronic design automation, Algorithms and Introduction to netlists and system partitioning		
Partitioning Algorithms: Kernighan-Li	in algorithm		
Pedagogy/Course delivery tools:	Chalk and talk		
• Links:	A		
	Unit – II		
Chip Planning: Introduction, Optimizat	tion goals in floor planning, Floor plan representations		
Floor Planning Algorithms: Floor plan	sizing, Cluster growth, Simulated annealing, Pin assignment		
Power and Ground Routing: Design Integrated floor planning algorithms	n of power-ground distribution network, Mesh routing,		
Pedagogy/Course delivery tools:	> Chalk and talk		
• Links:	A		
	Unit – III		
algorithms: min-cut placement, analytic placement, simulated annealing, Modern placement algorithms, Routing terminology and goals			
Re-route, Global routing in a connectival algorithms	vity graph, Modern global routing, Over the cell routing		
Pedagogy/Course delivery tools:	> Chalk and talk		
• Links:	\rightarrow		
	Unit – IV		
Detailed and Specialized Routing: Building the horizontal and vertical constraint graphs, Left-edge algorithm, Dog-legging, Switchbox routing, Introduction to area routing, NonManhattan routing, Routing in clock networks, clock-tree synthesis			
Pedagogy/Course delivery tools:	Chalk and talk		
• Links:	A		
Unit – V Timing Closure: Introduction, Static timing analysis, Zero-slack algorithm, Timing driven placement, Timing driven routing, Physical synthesis, Performance driven design flow			
• Pedagogy/Course delivery tools:	> Chalk and talk		
• Links:			
References:			
1. Andrew B. Kahng, Jens Lienig, I	Igor L. Markov, Jin Hu, "VLSI Physical Design: From Graph		
Partitioning to Timing Closure", 1st Edition, Springer, 2011.			
2. Sadiq M Sait, Habib Youssef, "VLSI Physical Design Automation", 1st Edition, World			
Scientific Publishing, 1995. 2 Navid A Sharwani "Algorithms for VISI Deviced Design Automation" and Edition			
Springer, 2005.			

At the end of the course, students will be able to:

- 1. Employ basic partitioning algorithms to netlists. (POs: 3, 4)
- 2. Compute the area using different floor planning algorithms. (POs: 3, 4)
- Predict the cost on the resultant wiring due to different place and route algorithms. (POs: 3, 4)
- 4. Apply routing algorithms to interconnect and clock networks. (POs: 3, 4)
- 5. Choose appropriate interconnections in the presence of timing constraints. (POs: 3, 4)

Continuous Internal Evaluation: 50 Marks			
Assessment Tool	Marks	Course outcomes addressed	
Internal test-I	30	C01, C02, C03	
Internal test-II	30	CO3, CO4, CO5	
Average of the two internal tests shall be taken for 30 marks.			
Other components	Marks	Course outcomes addressed	
Quiz	10	C01, C02, C03	
Assignment	10	CO3, CO4, CO5	
Semester End Examination:	100	CO1, CO2, CO3, CO4, CO5	